<head> <title>Testing MathJax Example 2 (autonumbering)</title> <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> <script> MathJax = { tex: { tags: 'ams' // should be 'ams', 'none', or 'all' } }; </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script> </head> <body> This is the test of equation \ref{num1} (but ( eqref(num1) )\eqref{num1} also works) \begin{equation} \sqrt{b^2} = \pm b \label{num1} \end{equation} In equation \eqref{eq:sample}, we find the value of an interesting integral: \begin{equation} \int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15} \label{eq:sample} \end{equation} <hr>
Tuesday, September 17, 2019
MathJax example 2
Monday, September 16, 2019
MathJax Example using Latex and Automatic Equation Numbering
The commutator:
The Ladder Operators Construction
For the Harmonic Oscillator, we form the two operators<html> <head> <title>The Harmonic Oscillator</title> <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> <script> MathJax = { tex: { tags: 'ams' // should be 'ams', 'none', or 'all' } }; </script> <script async="" id="MathJax-script" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script> <script> MathJax = { tex: { inlineMath: [['$', '$'], ['\\(', '\\)']], tags:'ams' }, svg: { fontCache: 'global' } }; </script> </head> <body> The Hamiltonian for the Harmonic Oscillator is \begin{equation}\frac{p^2}{2\mu} + \frac{k}{2} x^2 \end{equation} where p is the momentum operator and x is the postition operator. We know that the Schrödinger prescription is \begin{equation}p \rightarrow - \boldsymbol{i} \hbar \frac{\partial}{\partial x} \end{equation} while $x \rightarrow x$, as usual. This means, as we well know, that the commutator of $x$ and $p$ is non-zero. (Note that we've dropped the operator subscript.) <h2> The commutator: $[\alpha,\beta]$</h2> \begin{equation*} [p,x]f =( px - xp)f = -\boldsymbol{i} \hbar \frac{\partial}{\partial x}xf - x(-\boldsymbol{i} \hbar \frac{\partial}{\partial x}f) \end{equation*} where $f(x) \mapsto f$, which leads to \begin{equation*} [p,x]f =( px - xp)f = -f\boldsymbol{i} \hbar \frac{\partial x}{\partial x} + x \left (-\boldsymbol{i} \hbar \frac{\partial}{\partial x}\right )f - x\left (-\boldsymbol{i} \hbar \frac{\partial}{\partial x}f\right ) \end{equation*} which means, of course, \begin{equation} [p,x] = px - xp = -\boldsymbol{i} \hbar \end{equation} <br /> <h2> The Ladder Operators Construction</h2> For the Harmonic Oscillator, we form the two operators \begin{equation} a^+ = p + \boldsymbol{i} \mu\omega x \end{equation} and \begin{equation} a^- = p - \boldsymbol{i} \mu\omega x \end{equation} which differ solely by that intervening sign (Remember that $\omega = \sqrt{\frac{k}{\mu}}$). The entire derivation now hinges on the properties of these two operators. We start with the elementary question, what is the commutator of $a^+$ and $a^-$? </body> </html>
Wednesday, September 11, 2019
MathJax example with Latex
<html> <head> <title>MathJax TeX Test Page</title> <script> MathJax = { tex: { inlineMath: [['$', '$'], ['\\(', '\\)']] }, svg: { fontCache: 'global' } }; </script> <script type="text/javascript" id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"> </script> </head> <body> This is the text \begin{equation} \sqrt{b^2} \end{equation} </body> </html>
Subscribe to:
Posts (Atom)